Biologická konverze energeticky bohatých plynů na biometan
DOI:
https://doi.org/10.35933/ENTECHO.2021.001Klíčová slova:
anaerobní fermentace, bioplyn, biologická konverze, biometan, hydrogenotrofní metanogeny, metanogeneze, obnovitelná energieAbstrakt
Přechod ze stávajících neobnovitelných zdrojů elektrické energie na zdroje obnovitelné se jeví jako vhodné řešení pro celosvětově narůstající spotřebu energie. Udržitelná technologie pro zpracování organických odpadů formou anaerobní fermentace produkuje bioplyn, z kterého se odstraněním oxidu uhličitého získává biometan – energeticky bohatý plyn kompatibilní se zemním plynem a využitelný jako biopalivo. Zaváděním externího vodíku, získaného z přebytečné energie z obnovitelných zdrojů, do procesu anaerobní fermentace dochází pomocí hydrogenotrofních metanogenů k redukci oxidu uhličitého na metan, čímž se zvyšuje výhřevnost bioplynu v ideálním případě až na biometan.
V rámci této práce byla zkoumána technologie obohacování bioplynu pomocí vodíku přímým zaváděním do fermentoru tzv. metoda in-situ a s využitím externího bioreaktoru tzv. metoda ex-situ Získané výsledky z provozu laboratorních modelů insitu a ex-situ bioreaktoru poslouží k sestrojení poloprovozního modelu této technologie pro následné převedení do praxe.
Reference
Agneessens, L. M.; Ottosen, L. D. M.; Voigt, N. V.; Nielsen, J. L.; de Jonge, N.; Fischer, C. H.; Kofoed, M. V. W., 2017. In-situ biogas upgrading with pulse H2 additions: The relevance of methanogen adaption and inorganic carbon level. Bioresource Technology 233, 256–263. https://doi.org/10.1016/j.biortech.2017.02.016
Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R., 2008. Biogas handbook. University of Southern Denmark, Esbjerg.
Alfaro, N.; Fdz-Polanco, M.; Fdz-Polanco, F.; Díaz, I., 2019. H2 addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge. Bioresource Technology 280, 1–8. https://doi.org/10.1016/j.biortech.2019.01.135
Ariesyady, H. D.; Ito, T.; Okabe, S., 2007. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Research 41(7), 1554–1568. https://doi.org/10.1016/j.watres.2006.12.036
Aryal, N.; Kvist, T.; Ammam, F.; Pant, D.; Ottosen, L. D. M., 2018. An overview of microbial biogas enrichment. Bioresource Technology 264, 359–369. https://doi.org/10.1016/j.biortech.2018.06.013
Bassani, I.; Kougias, P. G.; Angelidaki, I., 2016. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate. Bioresource Technology 221, 485–491. https://doi.org/10.1016/j.biortech.2016.09.083
Bassani, I.; Kougias, P. G.; Treu, L.; Porté, H.; Campanaro, S.; Angelidaki, I., 2017. Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresource Technology 234, 310–319. https://doi.org/10.1016/j.biortech.2017.03.055
Burkhardt, M.; Koschack, T.; Busch, G., 2015. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. Bioresource Technology 178, 330–333. https://doi.org/10.1016/j.biortech.2014.08.023
Carmo, M.; Stolten, D., 2019. Chapter 4 - Energy storage using hydrogen produced from excess renewable electricity: power to hydrogen, In: de Miranda, P. E. V. (Ed.), Science and Engineering of Hydrogen-Based Energy Technologies. Academic Press. https://doi.org/10.1016/B978-0-12-814251-6.00004-6
Colbertaldo, P.; Agustin, S. B.; Campanari, S.; Brouwer, J., 2019. Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity. International Journal of Hydrogen Energy, Special Issue on Power To Gas and Hydrogen applications to energy systems at different scales - Building, District and National level 44(19), 9558–9576. https://doi.org/10.1016/j.ijhydene.2018.11.062
Demirel, B.; Scherer, P., 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2), 173–190. https://doi.org/10.1007/s11157-008-9131-1
EIA, 2019. International Energy Outlook 2019. U.S. Energy Information Administration, Washington, D.C.
EK, 2019. Cílíme na klimatickou neutralitu do roku 2050: Strategická dlouhodobá vize pro prosperující, moderní, konkurenceschopné a klimaticky neutrální hospodářství EU. Úřad pro publikace Evropské unie, Luxembourg.
EK, 2018. Čistá planeta pro všechny: Evropská dlouhodobá strategická vize prosperující, moderní, konkurenceschopné a klimaticky neutrální ekonomiky (No. COM(2018) 773 final). Evropská komise, Generální ředitelství CLIMA, Brussels.
EUROSTAT, 2019. Statistiky obnovitelných zdrojů energie. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Statistiky_obnoviteln%C3%BDch_zdroj%C5%AF_energie
Fagbohungbe, M. O.; Komolafe, A. O.; Okere, U. V., 2019. Renewable hydrogen anaerobic fermentation technology: Problems and potentials. Renewable and Sustainable Energy Reviews 114, 109340. https://doi.org/10.1016/j.rser.2019.109340
Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T., 2016. Renewable Power-to-Gas: A technological and economic review. Renewable Energy 85, 1371–1390. https://doi.org/10.1016/j.renene.2015.07.066
Horáková, M.; Janda, V.; Koller, J.; Kollerová, Ľ.; Koubíková, J.; Palatý, J.; Pokorná, D.; Ptáková, H.; Schejbal, P.; Smrčková, Š.; Strnadová, N.; Sýkora, V., 2007. Analytika vody, dotisk 2. vydání. ed. Vysoká škola chemicko-technologická v Praze, Praha.
Kougias, P. G.; Treu, L.; Benavente, D. P.; Boe, K.; Campanaro, S.; Angelidaki, I., 2017. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology 225, 429–437. https://doi.org/10.1016/j.biortech.2016.11.124
Leonzio, G., 2016. Process analysis of biological Sabatier reaction for bio-methane production. Chemical Engineering Journal 290, 490–498. https://doi.org/10.1016/j.cej.2016.01.068
Luo, G.; Angelidaki, I., 2013. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97(3), 1373–1381. https://doi.org/10.1007/s00253-012-4547-5
Luo, G.; Angelidaki, I., 2012. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnology and Bioengineering 109(11), 2729–2736. https://doi.org/10.1002/bit.24557
Parra, D.; Valverde, L.; Pino, F. J.; Patel, M. K., 2019. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renewable and Sustainable Energy Reviews 101, 279–294. https://doi.org/10.1016/j.rser.2018.11.010
Pokorna, D.; Varga, Z.; Andreides, D.; Zabranska, J., 2019. Adaptation of anaerobic culture to bioconversion of carbon dioxide with hydrogen to biomethane. Renewable Energy 142, 167–172. https://doi.org/10.1016/j.renene.2019.04.076
Porté, H.; Kougias, P. G.; Alfaro, N.; Treu, L.; Campanaro, S.; Angelidaki, I., 2019. Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading. Science of The Total Environment 655, 529–538. https://doi.org/10.1016/j.scitotenv.2018.11.289
Procházka, J., 2013. Intenzifikace produkce bioplynu (Disertační práce). VŠCHT v Praze, Ústav technologie vody a prostředí, Praha.
Sladký, V., 2009. Metody úpravy bioplynu na kvalitu zemního plynu. Biom.cz 11(3).
Stams, A. J. M.; Plugge, C. M., 2009. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology 7(8), 568–577. https://doi.org/10.1038/nrmicro2166
Strübing, D.; Huber, B.; Lebuhn, M.; Drewes, J. E.; Koch, K., 2017. High performance biological methanation in a thermophilic anaerobic trickle bed reactor. Bioresource Technology 245, 1176–1183. https://doi.org/10.1016/j.biortech.2017.08.088
Tsavkelova, E.; Prokudina, L.; Egorova, M.; Leontieva, M.; Malakhova, D.; Netrusov, A., 2018. The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas. Process Biochemistry 66, 183–196. https://doi.org/10.1016/j.procbio.2017.12.006
Voelklein, M. A.; Rusmanis, D.; Murphy, J. D., 2019. Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion. Applied Energy 235, 1061–1071. https://doi.org/10.1016/j.apenergy.2018.11.006
Wang, W.; Xie, L.; Luo, G.; Zhou, Q.; Angelidaki, I., 2013. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Bioresource Technology 146, 234–239. https://doi.org/10.1016/j.biortech.2013.07.049
Wise, D. L.; Cooney, C. L.; Augenstein, D. C., 1978. Biomethanation: Anaerobic fermentation of CO2, H2 and CO to methane. Biotechnology and Bioengineering 20(8), 1153–1172. https://doi.org/10.1002/bit.260200804
Xu, H.; Wang, K.; Zhang, X.; Gong, H.; Xia, Y.; Holmes, D. E., 2020. Application of in-situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment. Bioresource Technology 299, 122598. https://doi.org/10.1016/j.biortech.2019.122598
Zhu, X.; Chen, L.; Chen, Y.; Cao, Q.; Liu, X.; Li, D., 2019. Differences of methanogenesis between mesophilic and thermophilic in situ biogas-upgrading systems by hydrogen addition. Journal of Industrial Microbiology and Biotechnology 46(11), 1569–1581. https://doi.org/10.1007/s10295-019-02219-w
Stahování
Publikováno
Jak citovat
Číslo
Sekce
Licence
Tato práce je licencována pod Mezinárodní licencí Creative Commons Attribution-NonCommercial-ShareAlike 4.0.