Environmentální stopy jako indikátory udržitelnosti. Kde se vzaly a co vlastně znamenají?
DOI:
https://doi.org/10.35933/ENTECHO.2021.004Klíčová slova:
Environmentální stopy, ekologická stopa, uhlíková stopa, vodní stopa, environmentální indikátoryAbstrakt
Se vzrůstající závažností současných environmentálních problémů roste poptávka po nástrojích, jak měřit a zobrazovat faktory, které tyto problémy způsobují. Často využívaným způsobem prezentace vlivu člověka na životní prostředí jsou indikátory environmentální stopy. Ačkoliv se slovo „stopa“ běžně využívá i v každodenním diskursu v populárních médiích, málokdy je zcela jasné, co za tímto pojmem stojí. Od devadesátých let minulého století bylo představeno mnoho studií environmentálních stop vyznačujících se často velmi odlišnými metodami a cíli. Rozdílné definice stopy jako indikátoru a různé přístupy k jejich kvantifikaci a využívání vedou ke stavu, kdy se pod stejným jménem prezentují velmi odlišné indikátory a často protichůdné závěry a doporučení. Nepochopení základních principů a metod na nichž jsou tyto studie postaveny může vést na jedné straně k nekritickému přijímání všech výsledků, na straně druhé k naprostému odmítání celého konceptu. Cílem tohoto článku je představit vývoj a základní principy u nejvýznamnějších environmentálních stop – ekologické stopy, uhlíkové stopy, vodní stopy, stopy na krajinu, materiálové stopy a dalších), a uvést základní body sporů a debat ohledně charakteru environmentálních stop a nastínit tak možnosti jejich budoucího vývoje.
Reference
Alvarez, S.; Carballo-Penela, A.; Mateo-Mantecón, I.; Rubio, A., 2016. Strengths-Weaknesses-Opportunities-Threats analysis of carbon footprint indicator and derived recommendations. Journal of Cleaner Production 121, 238–247. https://doi.org/10.1016/j.jclepro.2016.02.028
Asselin, A.; Rabaud, S.; Catalan, C.; Leveque, B.; L’Haridon, J.; Martz, P.; Neveux, G., 2020. Product Biodiversity Footprint – A novel approach to compare the impact of products on biodiversity combining Life Cycle Assessment and Ecology. Journal of Cleaner Production 248, 119262. https://doi.org/10.1016/j.jclepro.2019.119262
Bach, V.; Lehmann, A.; Görmer, M.; Finkbeiner, M., 2018. Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability 10(8), 2898. https://doi.org/10.3390/su10082898
Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15(4), 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
Blomqvist, L.; Brook, B. W.; Ellis, E. C.; Kareiva, P. M.; Nordhaus, T.; Shellenberger, M., 2013. Does the Shoe Fit? Real versus Imagined Ecological Footprints. PLOS Biology 11(11), e1001700. https://doi.org/10.1371/journal.pbio.1001700
Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J. C.; Wackernagel, M.; Galli, A., 2013. Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecological Indicators 24, 518–533. https://doi.org/10.1016/j.ecolind.2012.08.005
Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M. J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A. V.; Ridoutt, B.; Oki, T.; Worbe, S.; Pfister, S., 2018. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment 23(2), 368–378. https://doi.org/10.1007/s11367-017-1333-8
Boulay, A.-M.; Bare, J.; De Camillis, C.; Döll, P.; Gassert, F.; Gerten, D.; Humbert, S.; Inaba, A.; Itsubo, N.; Lemoine, Y.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A. V.; Ridoutt, B.; Schencker, U.; Shirakawa, N.; Vionnet, S.; Worbe, S.; Yoshikawa, S.; Pfister, S., 2015. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. The International Journal of Life Cycle Assessment 20(5), 577–583. https://doi.org/10.1007/s11367-015-0869-8
Boulay, A.-M.; Hoekstra, A. Y.; Vionnet, S., 2013. Complementarities of Water-Focused Life Cycle Assessment and Water Footprint Assessment. Environmental Science & Technology 47(21), 11926–11927. https://doi.org/10.1021/es403928f
Buhl, J.; Liedtke, C.; Teubler, J.; Bienge, K., 2019. The Material Footprint of private households in Germany: Linking the natural resource use and socioeconomic characteristics of users from an online footprint calculator in Germany. Sustainable Production and Consumption 20, 74–83. https://doi.org/10.1016/j.spc.2019.05.001
Ceballos, G.; Ehrlich, P. R.; Barnosky, A. D.; García, A.; Pringle, R. M.; Palmer, T. M., 2015. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances 1(5), e1400253. https://doi.org/10.1126/sciadv.1400253
Conley, D. J.; Paerl, H. W.; Howarth, R. W.; Boesch, D. F.; Seitzinger, S. P.; Havens, K. E.; Lancelot, C.; Likens, G. E., 2009. Controlling Eutrophication: Nitrogen and Phosphorus. Science 323(5917), 1014–1015. https://doi.org/10.1126/science.1167755
Čuček, L.; Klemeš, J. J.; Kravanja, Z., 2012. A Review of Footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, Recent Cleaner Production Advances in Process Monitoring and Optimisation 34, 9–20. https://doi.org/10.1016/j.jclepro.2012.02.036
Čuček, L.; Klemeš, J. J.; Varbanov, P. S.; Kravanja, Z., 2015. Significance of environmental footprints for evaluating sustainability and security of development. Clean Technologies and Environmental Policy 17(8), 2125–2141. https://doi.org/10.1007/s10098-015-0972-3
Dias, L. C. P.; Macedo, M. N.; Costa, M. H.; Coe, M. T.; Neill, C., 2015. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. Journal of Hydrology: Regional Studies 4, 108–122. https://doi.org/10.1016/j.ejrh.2015.05.010
Earth Overshoot Day 2021 Home - #MoveTheDate, b.r. . Earth Overshoot Day. https://www.overshootday.org/ (viděno 16. 10. 2021).
Einarsson, R.; Cederberg, C., 2019. Is the nitrogen footprint fit for purpose? An assessment of models and proposed uses. Journal of Environmental Management 240, 198–208. https://doi.org/10.1016/j.jenvman.2019.03.083
Erisman, J. W.; Leach, A.; Bleeker, A.; Atwell, B.; Cattaneo, L.; Galloway, J., 2018. An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain. Sustainability 10(4), 925. https://doi.org/10.3390/su10040925
Fang, K.; Heijungs, R., 2015a. Rethinking the Relationship between Footprints and LCA. Environmental Science & Technology 49(1), 10–11. https://doi.org/10.1021/es5057775
Fang, K.; Heijungs, R., 2015b. Investigating the inventory and characterization aspects of footprinting methods: lessons for the classification and integration of footprints. Journal of Cleaner Production 108, 1028–1036. https://doi.org/10.1016/j.jclepro.2015.06.086
Fang, K.; Heijungs, R.; de Snoo, G. R., 2014. Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecological Indicators 36, 508–518. https://doi.org/10.1016/j.ecolind.2013.08.017
Fang, K.; Heijungs, R.; de Snoo, G. R., 2013. The footprint family: comparison and interaction of the ecological, energy, carbon and water footprints. Revue de Métallurgie 110(1), 77–86. https://doi.org/10.1051/metal/2013051
Fang, K.; Heijungs, R.; Duan, Z.; de Snoo, G. R., 2015. The Environmental Sustainability of Nations: Benchmarking the Carbon, Water and Land Footprints against Allocated Planetary Boundaries. Sustainability 7(8), 11285–11305. https://doi.org/10.3390/su70811285
Finkbeiner, M., 2009. Carbon footprinting—opportunities and threats. The International Journal of Life Cycle Assessment 14(2), 91–94. https://doi.org/10.1007/s11367-009-0064-x
Galli, A.; Weinzettel, J.; Cranston, G.; Ercin, E., 2013. A Footprint Family extended MRIO model to support Europe’s transition to a One Planet Economy. Science of The Total Environment 461–462, 813–818. https://doi.org/10.1016/j.scitotenv.2012.11.071
Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S., 2012. Integrating Ecological, Carbon and Water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecological Indicators, The State of the Art in Ecological Footprint: Theory and Applications 16, 100–112. https://doi.org/10.1016/j.ecolind.2011.06.017
Ghinea, C.; Campean, T.; Gavrilescu, M., 2017. Integrating sustainability indicators for tracking anthropogenic pressure on the earth - the footprint family. Environmental Engineering and Management Journal 16(4), 935–948. https://doi.org/10.30638/eemj.2017.095
Giama, E.; Papadopoulos, A. M., 2018. Carbon footprint analysis as a tool for energy and environmental management in small and medium-sized enterprises. International Journal of Sustainable Energy 37(1), 21–29. https://doi.org/10.1080/14786451.2016.1263198
Giampietro, M.; Saltelli, A., 2014. Footprints to nowhere. Ecological Indicators 46, 610–621. https://doi.org/10.1016/j.ecolind.2014.01.030
Giljum, S.; Bruckner, M.; Martinez, A., 2015. Material Footprint Assessment in a Global Input-Output Framework. Journal of Industrial Ecology 19(5), 792–804. https://doi.org/10.1111/jiec.12214
Glavič, P.; Lukman, R., 2007. Review of sustainability terms and their definitions. Journal of Cleaner Production 15(18), 1875–1885. https://doi.org/10.1016/j.jclepro.2006.12.006
Gosling, S. N.; Arnell, N. W., 2016. A global assessment of the impact of climate change on water scarcity. Climatic Change 134(3), 371–385. https://doi.org/10.1007/s10584-013-0853-x
Grönman, K.; Ypyä, J.; Virtanen, Y.; Kurppa, S.; Soukka, R.; Seuri, P.; Finér, A.; Linnanen, L., 2016. Nutrient footprint as a tool to evaluate the nutrient balance of a food chain. Journal of Cleaner Production 112, 2429–2440. https://doi.org/10.1016/j.jclepro.2015.09.129
Guinée, J. B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T., 2011. Life Cycle Assessment: Past, Present, and Future. Environmental Science & Technology 45(1), 90–96. https://doi.org/10.1021/es101316v
Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; Stacke, T.; Tessler, Z. D.; Wada, Y.; Wisser, D., 2014. Global water resources affected by human interventions and climate change. PNAS 111(9), 3251–3256. https://doi.org/10.1073/pnas.1222475110
Hanafiah, M. M.; Hendriks, A. J.; Huijbregts, M. A. J., 2012. Comparing the ecological footprint with the biodiversity footprint of products. Journal of Cleaner Production 37, 107–114. https://doi.org/10.1016/j.jclepro.2012.06.016
Häyhä, T.; Lucas, P. L.; van Vuuren, D. P.; Cornell, S. E.; Hoff, H., 2016. From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged? Global Environmental Change 40, 60–72. https://doi.org/10.1016/j.gloenvcha.2016.06.008
Heinonen, J.; Ottelin, J.; Ala-Mantila, S.; Wiedmann, T.; Clarke, J.; Junnila, S., 2020. Spatial consumption-based carbon footprint assessments - A review of recent developments in the field. Journal of Cleaner Production 256, 120335. https://doi.org/10.1016/j.jclepro.2020.120335
Hoekstra, A. Y., 2017. Water Footprint Assessment: Evolvement of a new research field. Water Resources Management 31(10), 3061–3081. https://doi.org/10.1007/s11269-017-1618-5
Hoekstra, A. Y., 2016. A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators 66, 564–573. https://doi.org/10.1016/j.ecolind.2016.02.026
Hoekstra, A. Y., 2015. The sustainability of a single activity, production process or product. Ecological Indicators 57, 82–84. https://doi.org/10.1016/j.ecolind.2015.04.022
Hoekstra, A. Y. (Ed.), 2003. Virtual Water Trade – Proceedings of the international expert meeting on Virtual Water Trade. IHE, Delft.
Hoekstra, A. Y.; Hung, P. Q., 2003. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade, In: Hoekstra, A. Y. (Ed.), Virtual Water Trade – Proceedings of the international expert meeting on Virtual Water Trade. IHE, Delft.
Hoekstra, A. Y.; Hung, P. Q., 2002. Virtual water trade - A quantification of virtual water flows between nations in relation to international crop trade (No. 12), Value of Water Research Report Series. UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
Hoekstra, A. Y.; Chapagain, A. K., 2008. Globalization of water: Sharing the planet’s freshwater resources. Blackwell Pub, Malden, MA.
Hoekstra, A. Y.; Chapagain, A. K.; Aldaya, M. M.; Mekonnen, M. M., 2011. The water footprint assessment manual: Setting the global standard. Earthscan, London ; Washington, DC.
Hoekstra, A. Y.; Wiedmann, T. O., 2014. Humanity’s unsustainable environmental footprint. Science 344(6188), 1114–1117. https://doi.org/10.1126/science.1248365
Huang, C.-L.; Gao, B.; Xu, S.; Huang, Y.; Yan, X.; Cui, S., 2019. Changing phosphorus metabolism of a global aquaculture city. Journal of Cleaner Production 225, 1118–1133. https://doi.org/10.1016/j.jclepro.2019.03.298
Hubacek, K.; Feng, K., 2016. Comparing apples and oranges: Some confusion about using and interpreting physical trade matrices versus multi-regional input–output analysis. Land Use Policy 50, 194–201. https://doi.org/10.1016/j.landusepol.2015.09.022
Chen, X.; Li, C.; Li, M.; Fang, K., 2021. Revisiting the application and methodological extensions of the planetary boundaries for sustainability assessment. Science of The Total Environment 788, 147886. https://doi.org/10.1016/j.scitotenv.2021.147886
IPCC, 2021. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
IPCC, 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge ; New York.
Jiang, M.; Behrens, P.; Wang, T.; Tang, Z.; Yu, Y.; Chen, D.; Liu, L.; Ren, Z.; Zhou, W.; Zhu, S.; He, C.; Tukker, A.; Zhu, B., 2019. Provincial and sector-level material footprints in China. PNAS 116(52), 26484–26490. https://doi.org/10.1073/pnas.1903028116
Jiang, S.; Hua, H.; Sheng, H.; Jarvie, H. P.; Liu, Xin; Zhang, Y.; Yuan, Z.; Zhang, L.; Liu, Xuewei, 2019. Phosphorus footprint in China over the 1961–2050 period: Historical perspective and future prospect. Science of The Total Environment 650, 687–695. https://doi.org/10.1016/j.scitotenv.2018.09.064
Kiem, A. S.; Johnson, F.; Westra, S.; van Dijk, A.; Evans, J. P.; O’Donnell, A.; Rouillard, A.; Barr, C.; Tyler, J.; Thyer, M.; Jakob, D.; Woldemeskel, F.; Sivakumar, B.; Mehrotra, R., 2016. Natural hazards in Australia: droughts. Climatic Change 139(1), 37–54. https://doi.org/10.1007/s10584-016-1798-7
Kitzes, J.; Galli, A.; Bagliani, M.; Barrett, J.; Dige, G.; Ede, S.; Erb, K.; Giljum, S.; Haberl, H.; Hails, C.; Jolia-Ferrier, L.; Jungwirth, S.; Lenzen, M.; Lewis, K.; Loh, J.; Marchettini, N.; Messinger, H.; Milne, K.; Moles, R.; Monfreda, C.; Moran, D.; Nakano, K.; Pyhälä, A.; Rees, W.; Simmons, C.; Wackernagel, M.; Wada, Y.; Walsh, C.; Wiedmann, T., 2009. A research agenda for improving national Ecological Footprint accounts. Ecological Economics, Methodological Advancements in the Footprint Analysis 68(7), 1991–2007. https://doi.org/10.1016/j.ecolecon.2008.06.022
Kounina, A.; Margni, M.; Bayart, J.-B.; Boulay, A.-M.; Berger, M.; Bulle, C.; Frischknecht, R.; Koehler, A.; Milà i Canals, L.; Motoshita, M.; Núñez, M.; Peters, G.; Pfister, S.; Ridoutt, B.; van Zelm, R.; Verones, F.; Humbert, S., 2013. Review of methods addressing freshwater use in life cycle inventory and impact assessment. The International Journal of Life Cycle Assessment 18(3), 707–721. https://doi.org/10.1007/s11367-012-0519-3
Laurent, A.; Olsen, S. I.; Hauschild, M. Z., 2012. Limitations of Carbon Footprint as Indicator of Environmental Sustainability. Environmental Science & Technology 46(7), 4100–4108. https://doi.org/10.1021/es204163f
Leach, A. M.; Galloway, J. N.; Bleeker, A.; Erisman, J. W.; Kohn, R.; Kitzes, J., 2012. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development 1(1), 40–66. https://doi.org/10.1016/j.envdev.2011.12.005
Lenzen, M., 2014. An Outlook into a Possible Future of Footprint Research. Journal of Industrial Ecology 18(1), 4–6. https://doi.org/10.1111/jiec.12080
Lenzen, M.; Moran, D.; Kanemoto, K.; Foran, B.; Lobefaro, L.; Geschke, A., 2012. International trade drives biodiversity threats in developing nations. Nature 486(7401), 109–112. https://doi.org/10.1038/nature11145
Lewis, S. L.; Maslin, M. A., 2015. Defining the Anthropocene. Nature 519(7542), 171–180. https://doi.org/10.1038/nature14258
Lin, D.; Hanscom, L.; Martindill, J.; Borucke, M.; Cohen, L.; Galli, A.; Lazarus, E.; Zokai, G.; Iha, K.; Wackernagel, M., 2019. Working guidebook to the national footprint and biocapacity accounts (Working Paper No. version 1.3). Global Footprint Network, Oakland.
Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M. S.; Martindill, J.; Medouar, F.-Z.; Huang, S.; Wackernagel, M., 2018. Ecological Footprint Accounting for Countries: Updates and Results of the National Footprint Accounts, 2012–2018. Resources 7(3), 58. https://doi.org/10.3390/resources7030058
Liobikiene, G.; Chen, X.; Streimikiene, D.; Balezentis, T., 2020. The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach. Land Use Policy 91, 104375. https://doi.org/10.1016/j.landusepol.2019.104375
Lucas, P. L.; Wilting, H. C.; Hof, A. F.; van Vuuren, D. P., 2020. Allocating planetary boundaries to large economies: Distributional consequences of alternative perspectives on distributive fairness. Global Environmental Change 60, 102017. https://doi.org/10.1016/j.gloenvcha.2019.102017
MacDonald, G. K.; Bennett, E. M.; Carpenter, S. R., 2012. Embodied phosphorus and the global connections of United States agriculture. Environ. Res. Lett. 7(4), 044024. https://doi.org/10.1088/1748-9326/7/4/044024
Mancini, M. S.; Galli, A.; Niccolucci, V.; Lin, D.; Bastianoni, S.; Wackernagel, M.; Marchettini, N., 2016. Ecological Footprint: Refining the carbon Footprint calculation. Ecological Indicators 61, 390–403. https://doi.org/10.1016/j.ecolind.2015.09.040
Marquardt, S. G.; Guindon, M.; Wilting, H. C.; Steinmann, Z. J. N.; Sim, S.; Kulak, M.; Huijbregts, M. A. J., 2019. Consumption-based biodiversity footprints – Do different indicators yield different results? Ecological Indicators 103, 461–470. https://doi.org/10.1016/j.ecolind.2019.04.022
Marques, A.; Robuchon, M.; Hellweg, S.; Newbold, T.; Beher, J.; Bekker, S.; Essl, F.; Ehrlich, D.; Hill, S.; Jung, M.; Marquardt, S.; Rosa, F.; Rugani, B.; Suárez-Castro, A. F.; Silva, A. P.; Williams, D. R.; Dubois, G.; Sala, S., 2021. A research perspective towards a more complete biodiversity footprint: a report from the World Biodiversity Forum. The International Journal of Life Cycle Assessment 26(2), 238–243. https://doi.org/10.1007/s11367-020-01846-1
Marques, A.; Verones, F.; Kok, M. T.; Huijbregts, M. A.; Pereira, H. M., 2017. How to quantify biodiversity footprints of consumption? A review of multi-regional input–output analysis and life cycle assessment. Current Opinion in Environmental Sustainability 29, 75–81. https://doi.org/10.1016/j.cosust.2018.01.005
Martinez, S.; Delgado, M. del M.; Marin, R. M.; Alvarez, S., 2019. How do dietary choices affect the environment? The nitrogen footprint of the European Union and other dietary options. Environmental Science & Policy 101, 204–210. https://doi.org/10.1016/j.envsci.2019.08.022
Metson, G. S.; MacDonald, G. K.; Leach, A. M.; Compton, J. E.; Harrison, J. A.; Galloway, J. N., 2020. The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge? Environ. Res. Lett. 15(10), 105022. https://doi.org/10.1088/1748-9326/aba781
Moran, D.; Petersone, M.; Verones, F., 2016. On the suitability of input–output analysis for calculating product-specific biodiversity footprints. Ecological Indicators 60, 192–201. https://doi.org/10.1016/j.ecolind.2015.06.015
Mori, K.; Christodoulou, A., 2012. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental Impact Assessment Review 32(1), 94–106. https://doi.org/10.1016/j.eiar.2011.06.001
O’Brien, M.; Schütz, H.; Bringezu, S., 2015. The land footprint of the EU bioeconomy: Monitoring tools, gaps and needs. Land Use Policy 47, 235–246. https://doi.org/10.1016/j.landusepol.2015.04.012
Oita, A.; Malik, A.; Kanemoto, K.; Geschke, A.; Nishijima, S.; Lenzen, M., 2016. Substantial nitrogen pollution embedded in international trade. Nature Geoscience 9(2), 111–115. https://doi.org/10.1038/ngeo2635
Oita, A.; Wirasenjaya, F.; Liu, J.; Webeck, E.; Matsubae, K., 2020. Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resources, Conservation and Recycling 157, 104752. https://doi.org/10.1016/j.resconrec.2020.104752
Ottelin, J.; Ala-Mantila, S.; Heinonen, J.; Wiedmann, T.; Clarke, J.; Junnila, S., 2019. What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications. Environ. Res. Lett. 14(9), 093001. https://doi.org/10.1088/1748-9326/ab2212
Papangelou, A.; Towa, E.; Achten, W. M. J.; Mathijs, E., 2021. A resource-based phosphorus footprint for urban diets. Environ. Res. Lett. 16(7), 075002. https://doi.org/10.1088/1748-9326/ac07d6
Patterson, M.; McDonald, G.; Hardy, D., 2017. Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Modelling 362, 19–36. https://doi.org/10.1016/j.ecolmodel.2017.07.022
Perminova, T.; Sirina, N.; Laratte, B.; Baranovskaya, N.; Rikhvanov, L., 2016. Methods for land use impact assessment: A review. Environmental Impact Assessment Review 60, 64–74. https://doi.org/10.1016/j.eiar.2016.02.002
Pfister, S.; Boulay, A.-M.; Berger, M.; Hadjikakou, M.; Motoshita, M.; Hess, T.; Ridoutt, B.; Weinzettel, J.; Scherer, L.; Döll, P.; Manzardo, A.; Núñez, M.; Verones, F.; Humbert, S.; Buxmann, K.; Harding, K.; Benini, L.; Oki, T.; Finkbeiner, M.; Henderson, A., 2017. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”. Ecological Indicators 72, 352–359. https://doi.org/10.1016/j.ecolind.2016.07.051
Pfister, S.; Ridoutt, B. G., 2014. Water Footprint: Pitfalls on Common Ground. Environmental Science & Technology 48(1), 4–4. https://doi.org/10.1021/es405340a
Pope, J.; Annandale, D.; Morrison-Saunders, A., 2004. Conceptualising sustainability assessment. Environmental Impact Assessment Review 24(6), 595–616. https://doi.org/10.1016/j.eiar.2004.03.001
Quinteiro, P.; Dias, A. C.; Silva, M.; Ridoutt, B. G.; Arroja, L., 2015. A contribution to the environmental impact assessment of green water flows. Journal of Cleaner Production 93, 318–329. https://doi.org/10.1016/j.jclepro.2015.01.022
Quinteiro, P.; Ridoutt, B. G.; Arroja, L.; Dias, A. C., 2018. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. The International Journal of Life Cycle Assessment 23(1), 164–180. https://doi.org/10.1007/s11367-017-1304-0
Raworth, K., 2017. Doughnut economics: Seven ways to think like a 21st-century economist. Chelsea Green Publishing, White River Junction, Vermont.
Rees, W. E., 1992. Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanization 4(2), 121–130. https://doi.org/10.1177/095624789200400212
Rees, W.; Wackernagel, M., 1996. Urban ecological footprints: Why cities cannot be sustainable—And why they are a key to sustainability. Environmental Impact Assessment Review, Managing Urban Sustainability 16(4), 223–248. https://doi.org/10.1016/S0195-9255(96)00022-4
Ridoutt, B.; Fantke, P.; Pfister, S.; Bare, J.; Boulay, A.-M.; Cherubini, F.; Frischknecht, R.; Hauschild, M.; Hellweg, S.; Henderson, A.; Jolliet, O.; Levasseur, A.; Margni, M.; McKone, T.; Michelsen, O.; Milà i Canals, L.; Page, G.; Pant, R.; Raugei, M.; Sala, S.; Saouter, E.; Verones, F.; Wiedmann, T., 2015. Making Sense of the Minefield of Footprint Indicators. Environmental Science & Technology 49(5), 2601–2603. https://doi.org/10.1021/acs.est.5b00163
Ridoutt, B. G.; Pfister, S., 2013. Towards an Integrated Family of Footprint Indicators. Journal of Industrial Ecology 17(3), 337–339. https://doi.org/10.1111/jiec.12026
Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F. S.; Lambin, E. F.; Lenton, T. M.; Scheffer, M.; Folke, C.; Schellnhuber, H. J.; Nykvist, B.; de Wit, C. A.; Hughes, T.; van der Leeuw, S.; Rodhe, H.; Sörlin, S.; Snyder, P. K.; Costanza, R.; Svedin, U.; Falkenmark, M.; Karlberg, L.; Corell, R. W.; Fabry, V. J.; Hansen, J.; Walker, B.; Liverman, D.; Richardson, K.; Crutzen, P.; Foley, J. A., 2009. A safe operating space for humanity. Nature 461(7263), 472–475. https://doi.org/10.1038/461472a
Schaffartzik, A.; Haberl, H.; Kastner, T.; Wiedenhofer, D.; Eisenmenger, N.; Erb, K.-H., 2015. Trading Land: A Review of Approaches to Accounting for Upstream Land Requirements of Traded Products. Journal of Industrial Ecology 19(5), 703–714. https://doi.org/10.1111/jiec.12258
Schoer, K.; Weinzettel, J.; Kovanda, J.; Giegrich, J.; Lauwigi, C., 2012. Raw Material Consumption of the European Union – Concept, Calculation Method, and Results. Environmental Science & Technology 46(16), 8903–8909. https://doi.org/10.1021/es300434c
Steen-Olsen, K.; Weinzettel, J.; Cranston, G.; Ercin, A. E.; Hertwich, E. G., 2012. Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade. Environmental Science & Technology 46(20), 10883–10891. https://doi.org/10.1021/es301949t
Steffen, W.; Crutzen, P. J.; McNeill, J. R., 2007. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature. AMBIO: A Journal of the Human Environment 36(8), 614–621. https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2
Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S. E.; Fetzer, I.; Bennett, E. M.; Biggs, R.; Carpenter, S. R.; de Vries, W.; de Wit, C. A.; Folke, C.; Gerten, D.; Heinke, J.; Mace, G. M.; Persson, L. M.; Ramanathan, V.; Reyers, B.; Sörlin, S., 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347(6223), 1259855. https://doi.org/10.1126/science.1259855
UN, 1991. Naše společná budoucnost: Zpráva Světové komise pro životní prostředí a rozvoj, 1. vyd. ed. Academia : Ministerstvo životního prostředí České republiky, Praha.
UNFCCC, 2008. Kyoto protocol reference manual on accounting of emissions and assigned amount. United Nations Framework Convention on Climate Change, Bonn, Germany.
van den Bergh, J. C. J. M.; Grazi, F., 2014. Ecological Footprint Policy? Land Use as an Environmental Indicator. Journal of Industrial Ecology 18(1), 10–19. https://doi.org/10.1111/jiec.12045
van den Bergh, J. C. J. M.; Verbruggen, H., 1999. Spatial sustainability, trade and indicators: an evaluation of the ‘ecological footprint’. Ecological Economics 29(1), 61–72. https://doi.org/10.1016/S0921-8009(99)00032-4
Vanham, D.; Bidoglio, G., 2013. A review on the indicator water footprint for the EU28. Ecological Indicators 26, 61–75. https://doi.org/10.1016/j.ecolind.2012.10.021
Vanham, D.; Leip, A.; Galli, A.; Kastner, T.; Bruckner, M.; Uwizeye, A.; van Dijk, K.; Ercin, E.; Dalin, C.; Brandão, M.; Bastianoni, S.; Fang, K.; Leach, A.; Chapagain, A.; Van der Velde, M.; Sala, S.; Pant, R.; Mancini, L.; Monforti-Ferrario, F.; Carmona-Garcia, G.; Marques, A.; Weiss, F.; Hoekstra, A. Y., 2019. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Science of The Total Environment 693, 133642. https://doi.org/10.1016/j.scitotenv.2019.133642
Wackernagel, M., 2014. Comment on “Ecological Footprint Policy? Land Use as an Environmental Indicator”. Journal of Industrial Ecology 18(1), 20–23. https://doi.org/10.1111/jiec.12094
Wackernagel, M.; Rees, W. E., 1997. Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective. Ecological Economics 20(1), 3–24. https://doi.org/10.1016/S0921-8009(96)00077-8
Waters, C. N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A. D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E. C.; Ellis, M.; Jeandel, C.; Leinfelder, R.; McNeill, J. R.; Richter, D. deB.; Steffen, W.; Syvitski, J.; Vidas, D.; Wagreich, M.; Williams, M.; Zhisheng, A.; Grinevald, J.; Odada, E.; Oreskes, N.; Wolfe, A. P., 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269), aad2622. https://doi.org/10.1126/science.aad2622
Weinzettel, J.; Hertwich, E. G.; Peters, G. P.; Steen-Olsen, K.; Galli, A., 2013. Affluence drives the global displacement of land use. Global Environmental Change 23(2), 433–438. https://doi.org/10.1016/j.gloenvcha.2012.12.010
Weinzettel, J.; Vačkářů, D.; Medková, H., 2019. Potential net primary production footprint of agriculture: A global trade analysis. Journal of Industrial Ecology 23(5), 1133–1142. https://doi.org/10.1111/jiec.12850
Wiedmann, T.; Lenzen, M.; Keyßer, L. T.; Steinberger, J. K., 2020. Scientists’ warning on affluence. Nature Communications 11(1), 3107. https://doi.org/10.1038/s41467-020-16941-y
Wiedmann, T. O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K., 2015a. The material footprint of nations. PNAS 112(20), 6271–6276. https://doi.org/10.1073/pnas.1220362110
Wiedmann, T. O.; Schandl, H.; Moran, D., 2015b. The footprint of using metals: new metrics of consumption and productivity. Environmental Economics and Policy Studies 17(3), 369–388. https://doi.org/10.1007/s10018-014-0085-y
Wilting, H. C.; Schipper, A. M.; Bakkenes, M.; Meijer, J. R.; Huijbregts, M. A. J., 2017. Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis. Environmental Science & Technology 51(6), 3298–3306. https://doi.org/10.1021/acs.est.6b05296
Wright, L. A.; Kemp, S.; Williams, I., 2011. ‘Carbon footprinting’: towards a universally accepted definition. Carbon Management 2(1), 61–72. https://doi.org/10.4155/cmt.10.39
Wu, L.; Huang, K.; Ridoutt, B. G.; Yu, Y.; Chen, Y., 2021. A planetary boundary-based environmental footprint family: From impacts to boundaries. Science of The Total Environment 785, 147383. https://doi.org/10.1016/j.scitotenv.2021.147383
Yang, H.; Pfister, S.; Bhaduri, A., 2013. Accounting for a scarce resource: virtual water and water footprint in the global water system. Current Opinion in Environmental Sustainability, Aquatic and marine systems 5(6), 599–606. https://doi.org/10.1016/j.cosust.2013.10.003
Yu, Y.; Feng, K.; Hubacek, K., 2013. Tele-connecting local consumption to global land use. Global Environmental Change 23(5), 1178–1186. https://doi.org/10.1016/j.gloenvcha.2013.04.006
Stahování
Publikováno
Jak citovat
Číslo
Sekce
Licence
Copyright (c) 2021 Jan Matuštík, Vladimír Kočí
Tato práce je licencována pod Mezinárodní licencí Creative Commons Attribution-NonCommercial-ShareAlike 4.0.