Grey water footprint as an indicator of sustainable waste wa-ter discharge - Ohře River Basin case study
DOI:
https://doi.org/10.35933/ENTECHO.2019.12.001Keywords:
water footprint assessment, grey water footprint, sustainable development goals, wastewater treatment plantsAbstract
The Sustainable Development Goals (SDGs), adopted by all United Nations Member States in 2015, call, among others, for the improvement of water quality by reducing water pollution, avoiding waste disposal in water and minimizing hazardous chemicals discharge into water. One of the tools that can be used for the sustainability assessment of pollution discharge into water is the water footprint. The paper calculates the grey water footprint of large municipal wastewater treatment plants in the Ohře River basin, located in the Czech Republic. Municipal wastewater treatment plants listed by the state-owned enterprise Povodí Ohře in Water Balance Management reports were selected for the analysis. The receiving body assimilation capacity for individual pollutants was determined and the grey water footprint at the inlet and outlet of the WWTP was calculated. Subsequently, the sustainability assessment of the WWTP discharges were carried out and related to the long-term average flow rates in the receiving water body. The analyses showed that the assimilation capacity of the watercourse is mostly utilized by the discharge of total phosphorus and ammonia nitrogen. The analysis also showed that (with some exceptions) the wastewater treatment plants treat water sufficiently and the assimilation capacity of the watercourse is not exhausted.
References
Balkema, A. J.; Preisig, H. A.; Otterpohl, R.; Lambert, F. J. D., 2002. Indicators for the sustainability assessment of wastewater treatment systems. Urban Water 4(2), 153–161. https://doi.org/10.1016/S1462-0758(02)00014-6
Capodaglio, A. G.; Callegari, A.; Cecconet, D.; Molognoni, D., 2017. Sustainability of decentralized wastewater treatment technologies. Water Practice and Technology 12(2), 463–477. https://doi.org/10.2166/wpt.2017.055
Commission on Environment and Development World, 1991. Naše společná budoucnost: Zpráva Světové komise pro životní prostředí a rozvoj, ed. Academia : Ministerstvo životního prostředí České republiky, Praha.
EEA, 2004. Nitrogen and phosphorus in rivers. European Environment Agency. https://www.eea.europa.eu/data-and-maps/indicators/nitrogen-and-phosphorus-in-rivers
Franke, N. A.; Boyacioglu, H.; Hoekstra, A. Y., 2013. The grey water footprint accounting: tier 1 supporting guidelines, Water research report series. UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
Gu, Y.; Dong, Y.; Wang, H.; Keller, A.; Xu, J.; Chiramba, T.; Li, F., 2016. Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecological Indicators 60, 402–409. https://doi.org/10.1016/j.ecolind.2015.07.012
Hellström, D., 1997. An Exergy Analysis for a Wastewater Treatment Plant: An Estimation of the Consumption of Physical Resources. Water Environment Research 69(1), 44–51. https://doi.org/10.2175/106143097X125173
Hoekstra, A. Y., 2003. Virtual Water Trade – Proceedings of the international expert meeting on Virtual Water Trade (No. Value of Water Research Report Series No. 12). IHE, Delft.
Hoekstra, A. Y.; Chapagain, A. K.; Aldaya, M. M.; Mekonnen, M. M., 2011. The water footprint assessment manual: setting the global standard. Earthscan, London ; Washington, DC.
Hoekstra, A. Y.; Chapagain, A. K.; van Oel, P. R., 2017. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water 9(6), 438. https://doi.org/10.3390/w9060438
Høibye, L.; Clauson-Kaas, J.; Wenzel, H.; Larsen, H. F.; Jacobsen, B. N.; Dalgaard, O., 2008. Sustainability assessment of advanced wastewater treatment technologies. Water Science and Technology 58(5), 963–968. https://doi.org/10.2166/wst.2008.450
Jamshidi, S., 2019. An approach to develop grey water footprint accounting. Ecological Indicators 106, 105477. https://doi.org/10.1016/j.ecolind.2019.105477
Liu, C.; Kroeze, C.; Hoekstra, A. Y.; Gerbens-Leenes, W., 2012. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecological Indicators 18, 42–49. https://doi.org/10.1016/j.ecolind.2011.10.005
Liu, W.; Antonelli, M.; Liu, X.; Yang, H., 2017. Towards improvement of grey water footprint assessment: With an illustration for global maize cultivation. Journal of Cleaner Production 147, 1–9. https://doi.org/10.1016/j.jclepro.2017.01.072
Mičaník, T.; Hanslík, E.; Němejcová, D.; Baudišová, D., 2017. Klasifikace kvality povrchových vod. Vodohospodářské technicko-ekonomické informace 59(6), 4–11.
Miglietta, P. P.; Toma, P.; Fanizzi, F. P.; De Donno, A.; Coluccia, B.; Migoni, D.; Bagordo, F.; Serio, F., 2017. A Grey Water Footprint Assessment of Groundwater Chemical Pollution: Case Study in Salento (Southern Italy). Sustainability 9(5), 799. https://doi.org/10.3390/su9050799
Mihelcic, J. R.; Crittenden, J. C.; Small, M. J.; Shonnard, D. R.; Hokanson, D. R.; Zhang, Q.; Chen, H.; Sorby, S. A.; James, V. U.; Sutherland, J. W.; Schnoor, J. L., 2003. Sustainability Science and Engineering: The Emergence of a New Metadiscipline. Environ. Sci. Technol. 37(23), 5314–5324. https://doi.org/10.1021/es034605h
Molinos-Senante, M.; Gómez, T.; Garrido-Baserba, M.; Caballero, R.; Sala-Garrido, R., 2014. Assessing the sustainability of small wastewater treatment systems: A composite indicator approach. Science of The Total Environment 497–498, 607–617. https://doi.org/10.1016/j.scitotenv.2014.08.026
Pellicer-Martínez, F.; Martínez-Paz, J. M., 2016. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level. Science of The Total Environment 571, 561–574. https://doi.org/10.1016/j.scitotenv.2016.07.022
Pitter, P., 1999. Hydrochemie. Vysoká škola chemicko-technologická, Praha.
Rebitzer, G.; Hunkeler, D.; Jolliet, O., 2003. LCC—The economic pillar of sustainability: Methodology and application to wastewater treatment. Environmental Progress 22(4), 241–249. https://doi.org/10.1002/ep.670220412
Roeleveld, P. J.; Klapwijk, A.; Eggels, P. G.; Rulkens, W. H.; van Starkenburg, W., 1997. Sustainability of municipal waste water treatment. Water Science and Technology, Advanced wastewater treatment: Nutrient removal and anaerobic processes 35(10), 221–228. https://doi.org/10.1016/S0273-1223(97)00199-6
Rosendorf, P.; Ansorge, L.; Dostál, T.; Zahrádka, V.; Krása, J.; Beránek, J., 2015. Metodika pro posuzování vlivů zdrojů znečištění na eutrofizaci vodních nádrží. Výzkumný ústav vodohospodářský T. G. Masaryka, Praha. https://doi.org/10.13140/RG.2.2.22204.13444
Rosendorf, P.; Tušil, P.; Durčák, M.; Svobodová, J.; Beránková, T.; Vyskoč, P., 2011. Metodika hodnocení všeobecných fyzikálně-chemických složek ekologického stavu útvarů povrchových vod tekoucích (Závěrečná zpráva). Výzkumný ústav vodohospodářský T. G. Masaryka, v.v.i., Praha.
Stejskalová, L.; Ansorge, L.; Kučera, J.; Vološinová, D., 2019. Využití indikátoru šedé vodní stopy k posouzení role ČOV v malém povodí, In: 13. bienální konference Voda. CzWA, Poděbrady, 198–205.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Libor Ansorge, Lada Stejskalová, Jiří Dlabal, Jiří Kučera
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.