Elimination of micropollutants from water by a combination of oxidation and sorption processes on a laboratory scale

Authors

  • Tamara Pacholská Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6
  • Ivan Karpíšek Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6
  • Jana Zuzáková Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6; Pražské vodovody a kanalizace, a.s., Ke Kablu 971/1, Hostivař, 102 00 Praha 10
  • Vojtěch Kužel Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6
  • Stanislav Gajdoš Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6
  • Zuzana Nováková Pražské vodovody a kanalizace, a.s., Ke Kablu 971/1, Hostivař, 102 00 Praha 10
  • Dana Vejmelková Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6
  • Pavla Šmejkalová Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6
  • Vojtěch Kouba Vysoká škola chemicko-technologická v Praze, FTOP, Ústav technologie vody a prostředí, Technická 5, 166 28 Praha 6

DOI:

https://doi.org/10.35933/ENTECHO.2021.003

Keywords:

Micropollutants, post-treatment of municipal sewage treatment plant effluent, oxidation processes, sorption processes

Abstract

Micropollutants cause harm to aquatic ecosystems and can also negatively affect human health. Major sources of micropollutants input to aquatic environments are wastewater treatment plants due to their insufficient removal during the conventional mechanical-biological process. This study aimed to evaluate potential WWTP effluent post-treatment processes for the removal of selected pharmaceuticals and pesticides using oxidation (e.g., ozonization, UV/H2O2, Fenton, boron-doped diamond electrode) and sorption (e.g. granular activated carbon, zeolite) processes and their combinations. The removal of selected pharmaceuticals (e.g. erythromycin, sulphamethoxazole, ibuprofen) and pesticides (e.g. acetochlor ESA, metazachlor ESA) was tested in batch assays. The combination of UV/H2O2 and activated carbon adsorption was the most favorable in terms of removal efficiency and economic and operational parameters. This combination achieved the removal efficiencies of pharmaceuticals and pesticides of 91 and 100%, respectively, using an optimum H2O2 dose of 5 mg/L and UV intensity of 4 kJ/m2 followed by granular activated carbon adsorption. These promising results are currently adopted in a pilot-scale study for the post-treatment of a real WWTP effluent.

References

Golovko, O.; de Brito Anton, L.; Cascone, C.; Ahrens, L.; Lavonen, E.; Köhler, S. J., 2020. Sorption characteristics and removal efficiency of organic micropollutants in drinking water using granular activated carbon (GAC) in pilot-scale and full-scale tests. Water 12(7), 2053. https://doi.org/10.3390/w12072053

Hou, J.; Chen, Z.; Gao, J.; Xie, Y.; Li, L.; Qin, S.; Wang, Q.; Mao, D.; Luo, Y., 2019. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of upflow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Research 159, 511–520. https://doi.org/10.1016/j.watres.2019.05.034

Choe, H.-S.; Kim, K. Y.; Oh, J.-E.; Kim, J.-H., 2022. Parallel study on removal efficiency of pharmaceuticals and PFASs in advanced water treatment processes: Ozonation, GAC adsorption, and RO processes. Environmental Engineering Research 27(1), 200509. https://doi.org/10.4491/eer.2020.509

Jálová, V.; Jarošová, B.; Bláha, L.; Giesy, J. P.; Ocelka, T.; Grabic, R.; Jurčíková, J.; Vrana, B.; Hilscherová, K., 2013. Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. Environment International 59, 372–383. https://doi.org/10.1016/j.envint.2013.06.024

Kim, M.-K.; Zoh, K.-D., 2016. Occurrence and removals of micropollutants in water environment. Environmental Engineering Research 21(4), 319–332. https://doi.org/10.4491/eer.2016.115

Kruithof, J. C.; Kamp, P. C.; Martijn, B. J., 2007. UV/H2O2 treatment: A practical solution for organic contaminant control and primary disinfection. Ozone: Science & Engineering 29(4), 273–280. https://doi.org/10.1080/01919510701459311

Lebik-Elhadi, H.; Frontistis, Z.; Ait-Amar, H.; Amrani, S.; Mantzavinos, D., 2018. Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode: Role of operating parameters and matrix effect. Process Safety and Environmental Protection 116, 535–541. https://doi.org/10.1016/j.psep.2018.03.021

Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

Mackuľak, T.; Nagyová, K.; Faberová, M.; Grabic, R.; Koba, O.; Gál, M.; Birošová, L., 2015. Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP. Environmental Toxicology and Pharmacology 40(2), 492–497. https://doi.org/10.1016/j.etap.2015.07.002

Matafonova, G.; Batoev, V., 2017. Comparison of energy requirements for removal of organic micropollutants from lake water and wastewater effluents by direct UV and UV/H2O2 using excilamp. DWT 85, 92–102. https://doi.org/10.5004/dwt.2017.21245

McBeath, S. T.; Wilkinson, D. P.; Graham, N. J. D., 2019. Application of boron-doped diamond electrodes for the anodic oxidation of pesticide micropollutants in a water treatment process: a critical review. Environ. Sci.: Water Res. Technol. 5(12), 2090–2107. https://doi.org/10.1039/C9EW00589G

Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U., 2018. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042

Rodriguez-Narvaez, O. M.; Peralta-Hernandez, J. M.; Goonetilleke, A.; Bandala, E. R., 2017. Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal 323, 361–380. https://doi.org/10.1016/j.cej.2017.04.106

Shon, H. K.; Vigneswaran, S.; Snyder, S. A., 2006. Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Critical Reviews in Environmental Science and Technology 36(4), 327–374. https://doi.org/10.1080/10643380600580011

Sirés, I.; Brillas, E.; Oturan, M. A.; Rodrigo, M. A.; Panizza, M., 2014. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14), 8336–8367. https://doi.org/10.1007/s11356-014-2783-1

Sousa, J. C. G.; Ribeiro, A. R.; Barbosa, M. O.; Pereira, M. F. R.; Silva, A. M. T., 2018. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058

Published

2021-06-30

How to Cite

Pacholská, T. (2021) “Elimination of micropollutants from water by a combination of oxidation and sorption processes on a laboratory scale”, ENTECHO, 4(1), pp. 15–20. doi: 10.35933/ENTECHO.2021.003.

Issue

Section

Peer reviewed articles